Skip to main content

JOYSTICK WORKING AND DRIFT :GAMING TO AEROSPACE

  TITLE: THE EVOLUTION AND MECHANICS OF JOYSTICKS: FROM GAMING TO AEROSPACE INTRODUCTION: JOYSTICKS HAVE TRANSCENDED THEIR ORIGINS AS MERE GAMING PERIPHERALS TO BECOME INTEGRAL COMPONENTS IN VARIOUS INDUSTRIES, FROM AVIATION AND SPACE EXPLORATION TO MEDICAL EQUIPMENT AND INDUSTRIAL MACHINERY. THESE VERSATILE INPUT DEVICES HAVE EVOLVED SIGNIFICANTLY SINCE THEIR INCEPTION, OFFERING PRECISE CONTROL AND ERGONOMIC DESIGN. THIS ARTICLE DELVES INTO THE EVOLUTION, MECHANICS, AND DIVERSE APPLICATIONS OF JOYSTICKS ACROSS DIFFERENT FIELDS. HISTORY OF JOYSTICKS: THE CONCEPT OF THE JOYSTICK DATES BACK TO THE EARLY 20TH CENTURY WHEN IT WAS INITIALLY USED IN AVIATION FOR CONTROLLING AIRCRAFT. THE EARLIEST JOYSTICKS WERE SIMPLE MECHANICAL DEVICES CONSISTING OF A LEVER MOUNTED ON A PIVOT, WHICH PILOTS USED TO MANEUVER THEIR PLANES. OVER TIME, JOYSTICKS FOUND THEIR WAY INTO ARCADE GAMES, HOME CONSOLES, AND EVENTUALLY PERSONAL COMPUTERS, REVOLUTIONIZING THE GAMING INDUSTRY. MECHANICS OF JOY...

HOW DO COMPUTER UNDERSTAND LOGIC

 

HOW DO COMPUTER UNDERSTAND THE BINARY LOGIC?

HOW DO COMPUTER UNDERSTAND LOGIC, COMPUTER PROGRAM


 

.  I am going to write about binary logic, that most of the computer manufacturers and developers use.

                

Binary logic deals with variables that take on two discrete values and with operations that assume logical meaning.  The two values the variables take may be called by different names (e.g. true and false, yes and no, etc.), but for our purpose it is convenient to think in terms of bits and assign the values of 1 and 0. 

 

Binary logic is used to describe, in a mathematical way, the manipulation and processing of binary information.  It is particularly suited for the analysis and design of digital systems.  For example, the digital logical circuits of many circuits that perform binary arithmetic are circuits whose behavior is most conveniently expressed by means of binary variables and logical operations.  The binary logic to be introduced in this section is equivalent to an algebra called Boolean algebra.

 

Binary logic consists of binary variables and logical operations.  The variables are designated by letters of the alphabet such as A, B, C, x, y, z, etc., with each variable having two and only two distinct  values : 0 and 1.  There are basic logic operations: AND, OR and NOT.

 

·        AND: This operation is represented by a dot or by the absence of an operator.  For example, x.y = z or xy=z is read “x AND y is equal to z”.  The logical operation  AND interpreted  to mean and z = 1 if and only if x = 1 and y = 1 otherwise z = 0. (Remember that x, y and z are binary variables and can be equal to either 1 or 0 nothing else).

·        OR : This operation is shown by addition symbol.  For example,  x + y = z is read “ x OR  y is equal to z”      meaning that z = 1 if x=1 or y=1 or both x=1 or if both x=1 and y = 1.  If both x = 0 , then y = 0 then z = 0.

·        NOT : This operation is presented by  a prime (sometimes by a bar).  For example , x’ = z (or x not equal to z meaning that x is what z is not) .  In other words, if x = 1, and z = 0 .  But if x=0 then z = 1.

 

Binary logic resembles binary arithmetic and the operations “AND” and “OR” have some similarities to multiplication and additions, respectively.  In fact, the symbols used for AND and OR are the same as those used for multiplication and addition.  However, binary logic should not be confused with binary arithmetic.  One should realize that an arithmetic variable designates a number that may consist of many digits.  A logic variable is either a one or zero.  For example, in binary arithmetic we have 1 + 1 = 1 (read “one plus one equal to 2” while in binary logic we have 1 + 1 = 1 (read “ one or one equal to one”

 

For each combination of the values of x and y there is a value of z specified by the definition of the logical operation.  These definations may be listed in compact form using truth tables.  A truth table is a table of all possible combination of the variables showing the relations between the balues that the variables may take and the result of the operation.  For example, the truth tables for he operations AND and OR with variables x and y are obtained by listing all possible values that the variable may have when combined in pairs.  The result of the operation for each combination is when listed in a separate row.  The truth tables for “AND” , “OR” and “NOT” are as under.

 

                                    AND                        

X

y

x.y

0

0

0

0

1

0

1

0

0

1

1

1

 

                                     OR

 

X

y

x +  y

0

0

0

0

1

1

1

0

1

1

1

1

 

 

                                  

 

                      NOT

X

x’

0

1

0

1

1

0

1

0

 YOU MAY ALSO LIKE:HARDWARE COMPONENTS A SHORT NOTE

YOU MAY ALSO LIKE: GENERAL FEATURES OF WINDOW 7

YOU MAY ALSO LIKE: FLASH MEMORY A SHORT NOTE

Comments

Popular posts from this blog

CONTROLLER CHIPS AND BUS ARCHITECTURES IN PERSONAL COMPUTER

  CONTROLLER CHIPS AND BUS ARCHITECTURES IN COMPUTER CONTROLLER CHIPS IN A COMPUTER REFER TO INTEGRATED CIRCUITS (ICS) OR CHIPS THAT ARE RESPONSIBLE FOR MANAGING AND CONTROLLING SPECIFIC FUNCTIONS OR COMPONENTS WITHIN THE COMPUTER SYSTEM. THESE CHIPS PLAY A CRUCIAL ROLE IN ENSURING THAT VARIOUS HARDWARE COMPONENTS WORK TOGETHER SEAMLESSLY. HERE ARE SOME COMMON TYPES OF CONTROLLER CHIPS FOUND IN COMPUTERS: 1.       PERIPHERAL CONTROLLER CHIPS: THESE CHIPS MANAGE THE COMMUNICATION BETWEEN THE COMPUTER'S CENTRAL PROCESSING UNIT (CPU) AND PERIPHERAL DEVICES SUCH AS HARD DRIVES, USB DEVICES, PRINTERS, AND MORE. FOR EXAMPLE, A SATA CONTROLLER CHIP MANAGES DATA TRANSFER BETWEEN THE CPU AND SATA-CONNECTED STORAGE DEVICES. 2.       GRAPHICS CONTROLLER CHIPS: ALSO KNOWN AS GRAPHICS PROCESSING UNITS (GPUS), THESE CHIPS HANDLE THE PROCESSING AND RENDERING OF GRAPHICS AND IMAGES. THEY ARE CRUCIAL FOR VIDEO DISPLAY AND GAMING PERFOR...

JOYSTICK WORKING AND DRIFT :GAMING TO AEROSPACE

  TITLE: THE EVOLUTION AND MECHANICS OF JOYSTICKS: FROM GAMING TO AEROSPACE INTRODUCTION: JOYSTICKS HAVE TRANSCENDED THEIR ORIGINS AS MERE GAMING PERIPHERALS TO BECOME INTEGRAL COMPONENTS IN VARIOUS INDUSTRIES, FROM AVIATION AND SPACE EXPLORATION TO MEDICAL EQUIPMENT AND INDUSTRIAL MACHINERY. THESE VERSATILE INPUT DEVICES HAVE EVOLVED SIGNIFICANTLY SINCE THEIR INCEPTION, OFFERING PRECISE CONTROL AND ERGONOMIC DESIGN. THIS ARTICLE DELVES INTO THE EVOLUTION, MECHANICS, AND DIVERSE APPLICATIONS OF JOYSTICKS ACROSS DIFFERENT FIELDS. HISTORY OF JOYSTICKS: THE CONCEPT OF THE JOYSTICK DATES BACK TO THE EARLY 20TH CENTURY WHEN IT WAS INITIALLY USED IN AVIATION FOR CONTROLLING AIRCRAFT. THE EARLIEST JOYSTICKS WERE SIMPLE MECHANICAL DEVICES CONSISTING OF A LEVER MOUNTED ON A PIVOT, WHICH PILOTS USED TO MANEUVER THEIR PLANES. OVER TIME, JOYSTICKS FOUND THEIR WAY INTO ARCADE GAMES, HOME CONSOLES, AND EVENTUALLY PERSONAL COMPUTERS, REVOLUTIONIZING THE GAMING INDUSTRY. MECHANICS OF JOY...

MOUSE TYPES AND INNER WORKINGS

 MOUSE TYPES AND INNER WORKINGS COMPUTER MICE COME IN VARIOUS TYPES, EACH DESIGNED FOR DIFFERENT PURPOSES AND PREFERENCES. HERE ARE SOME COMMON TYPES OF COMPUTER MICE: 1.      WIRED MOUSE : THIS IS THE TRADITIONAL TYPE OF MOUSE THAT CONNECTS TO THE COMPUTER VIA A CABLE. IT'S SIMPLE, RELIABLE, AND DOESN'T REQUIRE BATTERY CHANGES. HOWEVER, THE CABLE CAN SOMETIMES BE CUMBERSOME. 2.      WIRELESS MOUSE : THESE MICE CONNECT TO THE COMPUTER VIA WIRELESS TECHNOLOGY SUCH AS BLUETOOTH OR A USB RECEIVER. THEY OFFER MORE FLEXIBILITY IN MOVEMENT SINCE THEY ARE NOT TETHERED BY A CABLE. THEY REQUIRE BATTERIES OR RECHARGING. 3.      OPTICAL MOUSE : OPTICAL MICE USE AN LED LIGHT AND OPTICAL SENSOR TO TRACK MOVEMENT, TRANSLATING IT INTO CURSOR MOVEMENT ON THE SCREEN. THEY WORK ON MOST SURFACES AND ARE GENERALLY MORE ACCURATE THAN OLDER BALL MICE. 4.      LASER MOUSE : LASER MICE USE A LASER INSTEAD OF AN L...